On a conjecture of Keedwell and the cycle double cover conjecture

نویسندگان

  • Mohammad Mahdian
  • Ebadollah S. Mahmoodian
  • Amin Saberi
  • Mohammad R. Salavatipour
  • Ruzbeh Tusserkani
چکیده

At the 16th British Combinatorial Conference (1997), Cameron introduced a new concept called 2-simultaneous coloring. He used this concept to reformulate a conjecture of Keedwell (1994) on the existence of critical partial latin squares of a given type. Using computer programs, we have veri ed the truth of the above conjecture (the SE conjecture) for all graphs having less than 29 edges. In this paper we prove that SE conjecture is a consequence of the well-known oriented cycle double cover conjecture. This connection helps us to prove that the SE conjecture is true for semieulerian graphs. c © 2000 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

Directed cycle double covers and cut-obstacles

A directed cycle double cover of a graph G is a family of cycles of G, each provided with an orientation, such that every edge of G is covered by exactly two oppositely directed cycles. Explicit obstructions to the existence of a directed cycle double cover in a graph are bridges. Jaeger [4] conjectured that bridges are actually the only obstructions. One of the difficulties in proving the Jaeg...

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

Even cycle decompositions of 4-regular graphs and line graphs

An even cycle decomposition of a graph is a partition of its edge into even cycles. We first give some results on the existence of even cycle decomposition in general 4-regular graphs, showing that K5 is not the only graph in this class without such a decomposition. Motivated by connections to the cycle double cover conjecture we go on to consider even cycle decompositions of line graphs of 2-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2000